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Аннотация
Проведено аналитическое и численное исследование взаимодействий темных

солитонов нелинейного уравнения Шредингера с нелинейностью дефокусирую-
щего типа, с параметрической накачкой и диссипацией. Рассмотрены два типа
темных солитонов - стенка Нееля и стенка Блоха. С помощью прямого чис-
ленного решения исходного уравнения в частных производных показано, что, в
зависимости от значений параметров диссипации и накачки, два темных соли-
тона могут притягиваться, отталкиваться, либо формировать устойчивые свя-
занные состояния. Путем численного продолжения по параметрам накачки и
диссипации на плоскости этих параметров определены области существования
и устойчивости связанных состояний двух стенок Нееля и двух стенок Блоха.
Получены приближенные аналитические выражения для определения границ
этих областей.

We considered interactions between the dark solitons of the parametrically driven
nonlinear Schrödinger (NLS) equation:

i∂tΨ + 1
2
∂2

XΨ + Ψ − |Ψ|2Ψ = hΨ∗ − iγΨ. (1)

Here h is the strength of the parametric driving and γ is the damping coefficient.
Equation (1) was indeed derived in a broad variety of physical situations. In fluid

dynamics, the repulsive (“defocusing”) parametrically driven NLS describes the amplitude
of the water surface in a vibrated channel with large width-to-depth ratio [1]. The same
equation arises as an amplitude equation for the upper cutoff mode in a chain of parametri-
cally driven, damped nonlinear oscillators. In the optical context, it was derived for the
doubly resonant χ(2) optical parametric oscillator in the limit of large second-harmonic
detuning [2]. Next, stationary solutions of Eq.(1) with γ = 0 minimise the Ginzburg-
Landau free energy of the anisotropic XY -model [3]. Finally we note that Eq.(1) also
arises in a completely different magnetic context — that of a weakly anisotropic easy-
plane ferromagnet in a constant external magnetic field [4].

In the paper [5], interactions of the walls of the same type, i.e. Néel-Néel and Bloch-
Bloch interactions were studied. The analysis of the nonsymmetric situations, i.e. Néel-
Bloch interactions, required a different mathematical formalism and was presented separa-
tely in [6].

For the analysis of the Bloch-Bloch and Néel-Néel interaction we used the variational
method, under the assumption of well-separated walls. The variational analysis have
been verified in direct numerical simulations of the full partial differential equation.
The numerical simulations allow to advance beyond the limit of well-separated walls;
in particular, we use this approach to examine the outcome of soliton collisions.

For numerical investigation of stationary bound states (“bubble”, see Figs. 1 and 2)
in the case of dissipative dynamics, the continuation computer code [7] was applied. The
continuation algorithm is presented in [8], Sect. 1.4.
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The dynamics of the repelling solitons is, in a sense, trivial: if the walls are initially
at rest, they will simply diverge to the infinities. Less obvious is what the collision of two
attracting walls will result in. Less obvious is what the collision of two attracting walls will
result in. We studied the asymptotic (as t → ∞) attractors arising in the parametrically
driven NLS. It is shown that if the dynamics are dissipative, then, depending on the
strength of the driving, colliding walls either annihilate or form a stable stationary bound
state. In contrast to this, undamped collisions will be found to always produce a breather,
a spatially localised, temporally oscillating structure. Depending on the initial conditions,
the breather propagates or remains motionless, and in either case is found to persist
indefinitely.
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Fig. 1: The bubble with a small distance between the walls (a tightly bound complex). The solid
and the dashed lines stand for the real and imaginary part of ψ, respectively. For comparison,
we also show a bubble with a wide interwall separation arising for h2 close to γ2 + 1/9 (inset).
Here only the real part is shown as Imψ(x) = 0

Main results of our study are following [5].
In the dissipative situation (γ �= 0), the only available solitons are the Néel walls. When

two Néel walls are very far apart, their interaction is simple: the walls repel if h2 < γ2 + 1
9

and attract if h2 > γ2 + 1
9
. The repelling walls diverge to infinities; as for the case of

attraction, there are two possible scenarios. One is led to consider the situation where
the walls are closer to each other. At these shorter distances, the dynamics is influenced
by two bound states, a stable and an unstable one. The stable bound state exists for h
between

√
γ2 + 1/9 and a threshold driving strength hsn, and the unstable one exists for

all h < hsn. For small γ, the curve hsn(γ) can be described explicitly. In their region of
coexistence, the stable complex has a larger separation: 2zs > 2zu.

When h is smaller than
√

γ2 + 1/9, the walls repel if their separation distance 2z(0)
is greater than 2zu, the interwall separation in the unstable complex. If 2z(0) < 2zu, the
walls converge and annihilate. (This verdict does not extend to the region where both h
and γ are small. In this region the variational analysis of the small-separation dynamics
is inconclusive.) When

√
γ2 + 1/9 < h < hsn, pairs of Néel walls with separations 2z(0)
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Fig. 2: The existence and stability diagram of the bound states on the (γ, h)-plane (obtained
numerically.) The shaded corridor marks the region of coexistence of the stable and unstable
bubble. Its upper boundary corresponds to the turning point where the two bubbles merge;
there are no bound states above this line. The dotted curve gives the variational approximation
to the line of turning points. The lower boundary of the shaded area corresponds to the stable
bound state of two infinitely separated walls (an infinitely long stable bubble). This numerical
curve is visually indistinguishable from h =

√
γ2 + 1/9. In the strip between h =

√
γ2 + 1/9

and h = γ, only the unstable bubble is found. Inset: a blow-up of the small-γ region. Here, the
dotted curve is plotted using the asymptotic formula

larger than 2zu evolve towards the stable bound state while those with 2z(0) < 2zu

converge and annihilate.
Finally, the walls with h > hsn converge and annihilate irrespectively of their initial

separation. These results pertain to walls at shorter distances (which are however suffici-
ently far apart for the variational approximation to remain valid). In particular, they
answer the question as to what finally happens to the two walls attracted from very large
distances.

In the nondissipative case, the walls can move at constant speeds and the interaction
pattern becomes complicated by the presence of inertia. When h is greater than 1

3
(by

small or large value), the Néel walls attract and converge — unless the initial condition
corresponds to walls having large and opposite velocities. In the latter case the attraction
is unable to stop the diverging walls and they escape to infinities. On the other hand,
when h is smaller than 1

3
, the walls repel. The exception here is the case where h is close

to 1
3
; in this case walls with very large separations repel whereas walls which are not so

far from each other, attract.
In the dissipation-free case, the available dark solitons also include Bloch walls. The

interaction between two Bloch walls depends on their relative chiralities: two initially
quiescent, oppositely-handed Bloch walls attract while two quiescent walls with like chira-
lities placed at a large distance away from each other, repel. The exception is the case of
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h close to 1
3
; in this limit, two walls of like chirality repel at large distances but exhibit

anomalous interaction or transmute into an opposite-chirality pair and attract – when
placed closer to each other.

These conclusions can be extended to the case of the moving Bloch walls, where
one just needs to take their inertia into account. For example, two initially diverging
oppositely-handed walls at large separation will continue to diverge despite the attraction
whereas two likely-handed walls which were initially moving against each other, will
continue to converge (until the repulsion stops them and sends away to infinities).

In addition to the interactions between well-separated walls, we investigated products
of their collision. When the system is not damped, the collision of two walls results in a
stationary or travelling breather. We reconstructed the numerically found breather as an
asymptotic series.

When γ is nonzero, oscillations are damped and the only nontrivial product of collision
of two Néel walls is a stationary bubble — the bound state of two Néel walls (see Fig. 1).
Using the numerical continuation of solutions the corresponding ODE, we demarcated the
bubble’s domain of existence in the parameter space. [This domain is, naturally, a subset
of the part of the (γ, h)-plane in which remote walls attract]. The numerical demarcation
is in excellent agreement with the domain of existence obtained variationally (see Fig. 2).

References
[1] C. Elphick and E. Meron, Phys. Rev. A 40, 3226 (1989); B. Denardo, W. Wright, S.

Putterman, and A. Larraza, Phys. Rev. Lett. 64, 1518 (1990); W. Chen, L. Lu, and
Y. Zhu, Phys. Rev. E 71, 036622 (2005)

[2] S. Trillo, M. Haelterman and A. Sheppard, Opt. Lett. 22, 970 (1997)

[3] L.N. Bulaevskii and V.L. Ginzburg, Sov. Phys. JETP, 18, 530 (1964)

[4] I.V. Barashenkov, S.R. Woodford, E.V. Zemlyanaya, Phys. Rev. Lett. 90, 054103
(2003)

[5] I.V.Barashenkov, S.R. Woodford, E.V. Zemlyanaya. Interactions of Parametrically
Driven Dark Solitons. I: Neel-Neel and Bloch-Bloch interactions. Arxiv: nlin/0612059;
Phys. Rev. E, 75 026603 (2007)

[6] I.V. Barashenkov and S.R. Woodford, Interactions of Parametrically Driven Dark
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